นักคณิตศาสตร์

ยูคลิดแห่งอเล็กซานเดรีย (Euclid of Alexandria)
          ยูคลิดเป็นนักคณิตศาสตร์ที่สำคัญ และเป็นที่รู้จักกันดี ยูคลิดเกิดที่เมืองอเล็กซานเดรีย ประเทศอิยิปต์ เมื่อราว 365 ปี ก่อนคริสตกาล มีชีวิตอยู่จนกระทั่งประมาณปี 300 ก่อนคริสตกาล สิ่งที่มีชื่อเสียงคือผลงานเรื่องThe Elements หลักฐานและเรื่องราวเกี่ยวกับตัวยูคลิดยังคงสับสน เพราะมีผู้เขียนไว้หลายรูปแบบ อย่างไรก็ตามผลงานเรื่อง The Elements ยังคงหลงเหลืออยู่จนถึงทุกวันนี้ จากหลักฐานที่สับสนทำให้สันนิษฐานที่เกี่ยวกับยูคลิดมีหลายแนวทาง เช่น ยูคลิดเป็นบุคคลที่เขียนเรื่องThe Elements หรือยูคลิดเป็นหัวหน้าทีมนักคณิตศาสตร์ที่อาศัยอยู่ที่อเล็กซานเดรีย และได้ช่วยกันเขียนเรื่อง The Elements อย่างไรก็ดีส่วนใหญ่ก็มั่นใจว่ายูคลิดมีตัวตนจริง และเป็นปราชญ์อัจฉริยะทางด้านคณิตศาสตร์ที่มีชีวิตในยุคกว่า 2,000 ปีผลงาน The Elements แบ่งออกเป็นหนังสือได้ 13 เล่ม ใน เล่มแรกเป็นผลงานเกี่ยวกับเรขาคณิต เล่ม 7, 8 และ เป็นเรื่องราวเกี่ยวกับทฤษฎีตัวเลข เล่ม 10 เป็นเรื่องราวเกี่ยวกับทฤษฎีที่ว่าด้วยจำนวนอตรรกยะ เล่ม 11, 12 และ 13 เกี่ยวข้องกับเรื่องราว รูปเรขาคณิตทรงตัน และปิดท้ายด้วยการกล่าวถึงรูปทรงหลายเหลี่ยม และข้อพิสูจน์เกี่ยวกับรูปทรงหลายเหลี่ยม ผลงานของยูคลิดเป็นที่ยอมรับอย่างกว้างขวางมาก และกล่าวกันว่าผลงาน The Elements เป็นผลงานที่ต่อเนื่อง และดำเนินมาก่อนแล้วในเรื่องผลงานของนักคณิตศาสตร์ยุคก่อน เช่น เธลีส (Thales), ฮิปโปเครตีส (Hippocrates) และปีทาโกรัส (Pythagoras) อย่างไรก็ตาม หลายผลงานที่มีในหนังสือนี้เป็นที่เชื่อกันว่าเป็นบทพิสูจน์และผลงานของยูคลิดเอง ผลงานของยูคลิดได้รับการนำมาจัดทำใหม่ และตีพิมพ์เผยแพร่ครั้งแรกในปี ค.ศ. 1482 หลังจากนั้นมีผู้นำมาตีพิมพ์อีกมากมายนับจำนวนครั้งไม่ถ้วนหลัก การหา ห.ร.ม.ที่ง่ายที่สุดและรู้จักกันดีจนถึงปัจจุบันคือ ให้นำตัวเลขจำนวนน้อยหารตัวเลขจำนวนมาก เศษที่เหลือมาเทียบกับเลขจำนวนน้อย จับหารกันไปเรื่อย ๆ ทำเช่นนี้จนลงตัว ได้ ห.ร.ม. คือ ตัวเลขตัวสุดท้ายที่นำไปหารได้ลงตัวดังตัวอย่าง การหา ห.ร.ม. ของ 330 กับ 140 ทำได้โดยนำ 140 ไปหาร 330 ได้ผลลัพธ์ 2 เหลือเศษ 50 นำ 50 ไปหาร 140 ได้ผลลัพธ์ 2 เหลือเศษ 40 นำ 40 ไปหาร 50 ได้ผลลัพธ์ 1 เหลือเศษ 10 นำ 10 ไปหาร 40 ได้ผลลัพธ์ 4 และเป็นการหารลงตัว ดังนั้น ห.ร.ม.ของ 330 กับ 140 คือ 10


***********************************************************************

ปีทาโกรัส (Pythagoras)
           เกิด 582 ปี ก่อนคริสต์ศักราช ที่เมืองซามอส (Samos) ประเทศกรีซ (Greece) เสียชีวิตปี 507 ก่อนคริสต์ศักราช ที่เมืองเมตาปอนตัม (Metapontum)
ผลงาน
-สร้างสูตรคูณหรือตารางปีทาโกเรียน (Pythagorean Table)
ทฤษฎีบทเรขาคณิตที่ว่า ในรูปสามเหลี่ยมมุมฉากใด ๆ กำลังสองของความยาวของด้านตรงข้ามมุมฉากเท่ากับผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉาก
สมบัติของแสง และการมองวัตถุ
สมบัติของเสียงปีทาโกรัส เป็นที่รู้จักกันดีในฐานะของนักคณิตศาสตร์ผู้คิดค้นสูตรคูณ หรือตารางปีทาโกเรียน (Pythagorean Table) และทฤษฎีบทเรขาคณิตที่ว่าในรูปสามเหลี่ยมมุมฉากใด ๆ กำลังสองของความยาวของด้านตรงข้ามมุมฉากเท่ากับผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉาก” ซึ่งทฤษฎีทั้งสองนี้เป็นที่ยอมรับ และใช้กันมาจนปัจจุบันนี้ ปีทาโกรัสเป็นผู้เชี่ยวชาญด้านคณิตศาสตร์ ทฤษฎีของเขาได้นำมาพิสูจน์และพบว่าถูกต้องน่าเชื่อถือและใช้กันมาจนถึงปัจจุบันนี้ เนื่องจากปีทาโกรัสเป็นนักปราชญ์ที่เกิดก่อนคริสต์ศักราชถึง 582 ปี ดังนั้นประวัติชีวิตส่วนตัวของเขาจึงไม่มีการบันทึกไว้มากนัก เท่าที่มีการบันทึกไว้พบว่าเขาเป็นคนฉลาดหลักแหลม มีความสามารถ และเป็นที่นับถือของชาวเมืองมากทีเดียว เมื่อปีทาโกรัสอายุได้ 16 ปี เขาได้เดินทางไปศึกษาวิชากับเธลีส (Thales) นักปราชญ์เอกคนแรกของโลก แม้ว่าเธลีสจะเป็นผู้ที่มีความรู้กว้างขวางในหลายสาขาวิชา และได้ถ่ายทอดความรู้เหล่านั้นให้กับปีทาโกรัสจนหมดสิ้น แต่ปีทาโกรัสก็ยังต้องการศึกษาหาความรู้เพิ่มเติมอีก ดังนั้นในปี 529 ก่อนคริสต์ศักราช ปีทาโกรัสจึงออกเดินทางไปตามเมืองต่าง ๆ เช่น อาระเบีย เปอร์เซีย อินเดีย และอียิปต์ตามลำดับ เขาได้กลับจากการเดินทางสู่เกาะซามอส และพบว่าเกาะซามอสได้อยู่ในความปกครองของโพลีเครตีส (Polycrates)และอีกส่วนหนึ่งได้ตกเป็นของเปอร์เซีย เมื่อปีทาโกรัสเห็นเช่นนั้น จึงเดินทางออกจากเกาะซามอสไปอยู่ที่เมืองโครตอน (Croton) ซึ่งตั้งอยู่ทางตอนใต้ของประเทศอิตาลี และที่เมืองโครตอนนี้เองปีทาโกรัสได้ตั้งโรงเรียนขึ้น โรงเรียนของปีทาโกรัสจะสอนเน้นหนักไปในเรื่องของปรัชญาคณิตศาสตร์ และดาราศาสตร์ เกี่ยวกับคณิตศาสตร์ปีทาโกรัสได้กล่าวว่าคณิตศาสตร์เป็นพื้นฐานของทุกสิ่งทุกอย่าง ถ้าไม่มีคณิตศาสตร์แล้ว ทุกอย่างก็จะไม่เกิดขึ้น” ข้อเท็จจริงข้อนี้ถือว่าถูกต้องที่สุด เพราะไม่ว่าจะเป็นการก่อสร้าง การคำนวณหาระยะทางหรือแม้กระทั่งการประดิษฐ์เครื่องใช้ การค้นพบเกี่ยวกับคณิตศาสตร์ของเขา ได้แก่ การพบเลขคี่ โดยเลข 5เป็นเลขคี่ตัวแรกของโลกและเลขยกกำลังสอง นอกจากนี้ปีทาโกรัสยังแบ่งคณิตศาสตร์ออกเป็น สาขา คือ
1. เลขคณิต ซึ่งเป็นเรื่องเกี่ยวกับตัวเลข
2. เรขาคณิต เป็นเรื่องเกี่ยวกับรูปทรงต่าง ๆ เช่น สี่เหลี่ยม วงกลม สามเหลี่ยม และหก เหลี่ยม เป็นต้น ซึ่งวิชานี้มีประโยชน์อย่างมากในทางสถาปัตยกรรม และทฤษฎีบทเรขาคณิตที่มีชื่อเสียงที่สุดของปีทาโกรัสก็คือ “ในรูปสามเหลี่ยมมุมฉากใด ๆ กำลังสองของความยาวของด้านตรงข้ามมุมฉากเท่ากับผลบวกของกำลังสองของความยาวของด้านประกอบ มุมฉาก
โรงเรียนของปีทาโกรัสมีผู้ให้ความสนใจส่งบุตรหลานเข้ามาเรียนจำนวนมาก ทั้งพระมหากษัตริย์ ขุนนางราชสำนัก และพ่อค้าคหบดีที่มั่งคั่ง ผู้ที่จบการศึกษาจากโรงเรียนแห่งนี้ได้มีการตั้งชุมนุม โดยใช้ชื่อว่าชุมนุมปีทาโกเรียน (Pythagorean)”ซึ่งผู้ที่จะสมัครเข้าชุมนุมปีทาโกเรียนจะต้องมีความรู้ด้านคณิตศาสตร์เป็นอย่างดี อีกทั้งจะไม่เผยแพร่ความรู้ด้านคณิตศาสตร์ให้กับผู้ที่ไม่ได้เป็นสมาชิกของชุมนุม ชุมนุมปีทาโกเรียนมีบทบาทอย่างมากในเรื่องของวิทยาศาสตร์ในยุคนั้น อีกทั้งเป็นชุมนุมแรกที่มีความเชื่อว่า โลกกลมและไม่ได้เป็นศูนย์กลางของจักรวาลอีกทั้งต้องโคจรอีกด้วยปีทาโกรัสเป็นนักวิทยาศาสตร์คนแรกที่ตั้งทฤษฎีเกี่ยวกับโลกกลม และหมุนรอบตัวเองรวมถึงดวงอาทิตย์ ดวงจันทร์ และดาวเคราะห์ ก็หมุนรอบตัวเองเช่นกัน ซึ่งทฤษฎีนี้ในเวลาต่อมานักดาราศาสตร์อย่างโคเปอร์นิคัส และกาลิเลโอ ได้นำมาพิสูจน์แล้วพบว่าทฤษฎีนี้ถูกต้องไม่เพียงแต่งานด้านคณิตศาสตร์ เท่านั้นที่ปิทาโกรัสให้ความสนใจ เขายังมีความสนใจเกี่ยวกับเรื่องแสงด้วย การค้นคว้าของปีทาโกรัสทำให้เขารู้ความจริงว่า มนุษย์ไม่สามารถมองเห็นแสงสว่างได้ เพราะแสงสว่างเป็นเพียงอนุภาคเล็ก ๆ เท่านั้น แต่แสงสว่างเป็นตัวการสำคัญที่ทำให้เรามองเห็นวัตถุ เนื่องจากแสงตกกระทบไปที่วัตถุ ทำให้วัตถุนั้นสะท้อนแสงมากระทบกับตาเราดังเช่นที่เราสามารถมองเห็นดวงจันทร์มีแสง ก็เพราะแสงจากดวงอาทิตย์ที่ส่องไปยังดวงจันทร์และสะท้อนกลับมายังโลกทั้ง ที่ดวงจันทร์ไม่มีแสง แต่เราก็สามารถมองเห็นดวงจันทร์ได้นอกจากเรื่องแสงแล้ว ปิทาโกรัสได้ค้นพบเกี่ยวกับเรื่องเสียงด้วย การค้นพบของเขาสรุปได้ว่าเสียงเกิดจากการสั่นสะเทือนของวัตถุ การพบความจริงข้อนี้เนื่องจากวันหนึ่งเขาได้เดินผ่านร้านตีเหล็กแห่งหนึ่ง ปีทาโกรัสได้ยินเสียงที่เกิดจากช่างตีเหล็กใช้ค้อนตีแผ่นเหล็ก แผ่นเหล็กนั้น สั่นสะเทือน ซึ่งเป็นตัวการที่ทำให้เกิดเสียง ปีทาโกรัสเสียชีวิตประมาณปี 507 ก่อนคริสต์ศักราช ที่เมืองเมตาปอนตัม (Metapontum)

***********************************************************************

ปิแยร์ เดอ แฟร์มาต์ (Pierre de Fermat)ประมาณ ค.ศ. 1601-1665

ประวัติ
        แฟร์มาต์เกิดใกล้เมือง Toulouse ประเทศฝรั่งเศส ในปี 1601 และถึง แก่กรรมที่เมือง Castres ในปี 1665บิดาเป็นพ่อค้าเครื่องหนัง ในวัยเด็กศึกษาอยู่กับบ้าน แฟร์มาต์มีอาชีพเป็นนักกฎหมาย เมื่ออายุ 30 ปี ได้รับการแต่งตั้งให้เป็นที่ปรึกษากฎหมายขององค์การบริหารส่วนท้องถิ่นของเมือง Toulouse ท่านได้ใช้เวลาว่างศึกษาค้นคว้าคณิตศาสตร์เพื่อเป็นสื่อกลางในการติดต่อกับนักคณิตศาสตร์ที่มีชื่อเสียงในสมัยนั้น ท่านมีส่วนในการพัฒนาคณิตศาสตร์ในหลายสาขา นับได้ว่าเป็นนักคณิตศาสตร์สมัครเล่นที่มีชื่อเสียงที่สุด
ผลงาน
1. ริเริ่มพัฒนาเรขาคณิตวิเคราะห์ ในระยะเวลาใกล้กันกับเดส์การ์ตส์
2. ริเริ่มวิธีหาเส้นสัมผัสเส้นโค้ง หาค่าสูงสุดและต่ำสุดของฟังก์ชัน
3. ริเริ่มพัฒนาทฤษฎีความน่าจะเป็นร่วมกับปาสกาล
4. พัฒนาทฤษฎีบทต่าง ในทฤษฎีจำนวน เช่น Fermat’s two square theorem :ทุกจำนวนเฉพาะในรูป 4n + 1 สามารถเขียน ในรูปผลบวกของจำนวนเต็มยกกำลังสองได้คู่หนึ่งและคู่เดียวเท่านั้น
Fermat’s theorem : ถ้า เป็นจำนวนเฉพาะและ เป็นจำนวนเต็มบวก จะได้ว่า pหารn p – n ลงตัว

***********************************************************************
แบลส ปาสกาล (Blaise Pascal) ประมาณ ค.ศ. 1623-1662
ประวัติ
ปาสกาลเกิดที่เมือง Chermont มณฑล Auvergne ประเทศฝรั่งเศส เมื่อวันที่ 16มิถุนายน ค.ศ. 1623 บิดาเป็นนักคณิตศาสตร์และผู้พิพากษา ปาสกาลมีความเป็นอัจฉริยะทางคณิตศาสตร์ตั้งแต่เด็กอายุ 12 ปี ท่านได้พัฒนาเรขาคณิตเบื้องต้นด้วยตนเอง
อายุ 14 ปี ท่านได้เข้าร่วมประชุมกับนักคณิตศาสตร์ฝรั่งเศส
อายุ 16 ปี ท่านได้พัฒนาทฤษฎีบทที่สำคัญในวิชาเราขาคณิตโพรเจคตีฟ
และเมื่ออายุ 19 ปี ท่านได้พัฒนาเครื่องคิดเลขภายหลังจากที่ท่านประสบอุบัติเหตุที่Neuilly ท่านหันความสนใจไปทางศาสนาและปรัชญา ไม่เช่นนั้นท่านคงเป็นนักคณิตศาสตร์ ที่รุ่งโรจน์ที่สุดคนหนึ่ง
ผลงาน
1. งานเขียน Essay pour les coniques (1640) ซึ่งสรุปทฤษฎีบทเกี่ยวกับเรขาคณิตโพรเจก ตีฟ ที่ท่านได้พัฒนามาแล้วเมื่ออายุได้ 16 ปี
2. งานเขียน Traite du traingle arithmetique (1665) ซึ่งเกี่ยวกับ “Chinese triangle” หรือในอดีตนิยมเรียกว่า “Pascal triangle” เพราะคิดว่า Pascal เป็นผู้คิดเป็นคนแรก แต่ที่แท้จริงได้มีชาวจีนพัฒนามาก่อนแล้ว
3. ริเริ่มพัฒนาทฤษฎีความน่าจะเป็นในปี ค.ศ. 1654 ร่วมกับ Fermat โดยใช้วิธีที่แตกต่างกัน
4. ศึกษาเส้นโค้ง Cycloid

***********************************************************************

ไม่มีความคิดเห็น:

แสดงความคิดเห็น